

IP 🖓

THE INSTITUTE OF PETROLEUM Designation: 369/(95)

Standard Test Method of Analysis of Oil-Soluble Petroleum Sulfonates by Liquid Chromatography¹

This standard is issued under the fixed designation D 3712; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

1. Scope*

1.1 This test method covers the analysis of refined and crude natural and synthetic oil-soluble sulfonate products. Resins, if present, are recovered with the oil phase and carboxylates are recovered as sulfonates.

1.2 This test method covers the determination of mineral oil, sodium sulfonate, inorganic salts, water, basicity or acidity, average molecular weight, and relative density of sodium sulfonate products.

1.3 This test method covers the determination of mineral oil, sulfonate, water, base number, average molecular weight, and relative density of calcium, barium, magnesium, and ammonium sulfonate products.

1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards: ²

- D 95 Test Method for Water in Petroleum Products and Bituminous Materials by Distillation
- D 2896 Test Method for Base Number of Petroleum Products by Potentiometric Perchloric Acid Titration

3. Terminology

3.1 Symbols:

3.1.1 Following are definitions of the symbols used in Section 17, and as noted in the sections in parentheses.

Α	=	g,,,
В	_	sulfonate (8.1.1). volume of chloroform solution, mL (10.1).
Б С	=	grams of sample of sodium sulfonate (10.1.1).
D	=	5 1 ()
D E	=	grams of oil recovered (10.4).
	=	grams of sodium sulfonate recovered (10.5).
F	=	grams of residue from chloroform blank (10.6).
G	=	grams of residue from alcohol blank (10.6).
Н	=	grams of sodium sulfonate (11.1).
1	=	grams of sodium sulfate ash from sodium sulfonate (11.2).
J	=	T/KS.
K	=	valence of cation.
S	=	average equivalent weight of sodium sulfonate (17.1.4).
Т	=	average molecular weight of calcium, barium, magnesium, or am-
		monium sulfonate (17.1.5).
U	=	percentage of sodium sulfonate (17.1.2).
V	=	percentage of calcium, barium, magnesium, or ammonium sul-
		fonate (17.1.3).
W_c	=	grams of water contained in pycnometer at 25°C (6.9).
W_s	=	grams of sample contained in pycnometer at 25°C (15.1).
X	=	grams of sodium sulfonate sample for basicity (12.1).
Y	=	volume of standard H ₂ SO ₄ or NaOH solution used to determine
		basicity or acidity (12.1).
Ζ	=	normality of standard H ₂ SO ₄ or NaOH solution to determine free
		basicity or acidity (12.1).
AA	=	grams of sodium sulfonate product ashed (13.1).
BB	=	grams of sodium sulfate from inorganic salt determination (13.1).
CC_A	=	percentage of free acidity of sodium sulfonate product as
A		H ₂ SO₄(17.1.6).
CC_B	=	percentage of free basicity of sodium sulfonate product as NaOH
B		(17.1.6).
DD	=	percentage of inorganic salts as sodium sulfate (17.1.7).
4 0		

4. Summary of Test Method

4.1 The sample, except a sodium sulfonate product, is dissolved in ethyl ether and converted to sulfonic acid, using dilute hydrochloric acid. The sulfonic acid after extraction is converted to sodium sulfonate and the isolated sodium sulfonate and mineral oil are dissolved in chloroform. An aliquot of the chloroform solution, or a sample of a sodium sulfonate product, dissolved in chloroform, is placed on a silica gel column. The oil is eluted with chloroform, the sulfonate with ethyl alcohol, and both are determined gravimetrically. Average molecular weight is calculated from the average equivalent weight of the sodium sulfonate, which is determined by ashing a portion of the isolated sodium sulfonate.

*A Summary of Changes section appears at the end of this standard.

¹ This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products and Lubricants and is the direct responsibility of Subcommittee D02.04 on Hydrocarbon Analysis.

Current edition approved June 1, 2005. Published July 2005. Originally approved in 1978. Last previous edition approved in 2001 as D $3712-91(2000)^{\epsilon_1}$.

This test method was adopted as a joint ASTM-IP standard.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

4.2 Water is determined by Test Method D 95. Base number is determined by Test Method D 2896. Relative density is determined by pycnometer.

5. Significance and Use

5.1 This test method provides a means of determining sulfonate content and of classifying and characterizing natural and synthetic petroleum sulfonate products by sulfonate content and average molecular weight. Purity of sodium sulfonate products is measured by basicity and inorganic salt contents and the reserve alkalinity of alkaline earth sulfonates by the total base number.

6. Apparatus

6.1 *Chromatographic column*, made of glass and consisting of a reservoir and separator section, and fitted with a TFE-fluorocarbon stopcock with a 2-mm bore, as shown in Fig. 1. A column with a detachable reservoir connected by a standard-taper joint can be used.

6.2 Steam Bath.

6.3 Vacuum Desiccator, shielded.

6.4 *Vacuum Oven*, capable of being maintained at 100° C (212°F) and connected to 559 to 635 mm (22 to 29 in.) Hg vacuum.

6.5 *Muffle Furnace*, capable of operating at 800 to 1000° C (1500 to 1800° F).

6.6 Dish, platinum, 100-mL capacity.

6.7 *Distillation Apparatus*, as described in Test Method D 95.

6.8 *Water Bath*, capable of being maintained at 25 ± 0.2 °C (77 ± 0.3 °F).

6.9 *Pycnometer*, as shown in Fig. 2. To calibrate, weigh to the nearest 1 mg with cap in place; then fill with distilled water at 15 to 20°C (60 to 68°F) and place in water bath at 25 \pm 0.2°C (77 \pm 0.3°F). After 30 min, adjust the water meniscus at

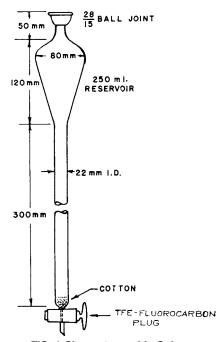


FIG. 1 Chromatographic Column

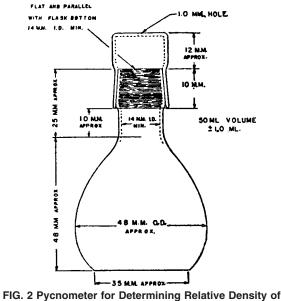


FIG. 2 Pycnometer for Determining Relative Density of Petroleum Sulfonates

the top of the neck so it is exactly level. To obtain a flat meniscus, add a minute amount of wetting agent to the water surface. Remove the pycnometer from the bath, and dry the outside. Replace the cap and weigh to the nearest 1 mg. Record the mass of water contained as W_c .

7. Reagents and Materials

7.1 *Purity of Reagents*—Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available.³ Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination.

7.2 Chloroform (Warning—Flammable, Health Hazard.).

7.3 *Ethyl Alcohol (95 %)*—Either pure grain or denatured ethyl alcohol conforming to Formula 3A of the U.S. Bureau of Internal Revenue (**Warning**—Flammable. Denatured alcohol cannot be made nontoxic.).

7.4 *Ethyl Ether* (**Warning**—Extremely flammable. Harmful if inhaled. May cause eye injury. Effects may be delayed. May form explosive peroxides. Vapors may cause flash fire. Moderately toxic. Irritating to skin.).

7.5 Filter Paper, slow-filtering, ashless, gravimetric.

7.6 *Hydrochloric Acid (Concentrated)*—(**Warning**— Poison. Corrosive. May be fatal if swallowed. Liquid and vapor cause severe burns. Harmful if inhaled.).

7.6.1 *Hydrochloric Acid, Dilute* (1 + 1)—(See **Warning** in 7.6.) One volume of concentrated hydrochloric acid (HCl) is added to 1 volume of water.

³ Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed by the American Chemical Society, see Annual Standards for Laboratory Chemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia and National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville, MD.